วันพุธที่ 2 กันยายน พ.ศ. 2558

บทที่ 4
 ความสัมพันธ์และฟังก์ชัน
5.1 ความสัมพันธ์และฟังก์ชัน
1)คู่อันดับ เขียนคู่อันดับในรูป (a,b) โดยที่  a เป็นสมาชิกตัวหน้า และ  เป็นสมาชิกตัวคู่หลัง คู่อันดับสองคู่อันดับใดๆ จะเท่ากัน ก็ต่อเมื่อสมาชิกตัวหน้าและสมาชิกตัวหลังของทั้งสองคู่อันดับนี้เท่านั้น

(ab(c,d) เมื่อ a= และ  b = d

2) ผลคูณคาร์ทีเซียน : ผลคูณคสร์ทีเซียนของเซต และ B เขียนแทนด้วย A x  B  หมายถึง เซตของคู่อันดับ (X , Y )  ทั้งหมด โดยที่  X อ่านเพิ่มเติม
บทที่ 3
จำนวนจริง
4.1จำนวนจริง
เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ  ได้แก่
- เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย  I
                   I = {1,2,3…}
เซตของจำนวนเต็มลบ  เขียนแทน อ่านเพิ่มเติม
บทที่ 2
การให้เหตุผล

การให้เหตุผลทางคณิตศาสตร์ที่สำคัญมีอยู่ 2 วิธี คือ
         3.1การให้เหตุผลแบบอุปนัย (Inductive Reasoningเป็นการสรุปผลในการค้นหาความจริงจากการสังเกต  หรือการทดลองหลายครั้งจากกรณีย่อยๆ แล้วนำมาสรุปเป็นความรู้แบบทั่วไป ซึ่งข้อสรุปที่ไม่จำเป็นต้องถูกต้องทุกครั้ง
         3.2การให้เหตุผลแบบนิรนัย (Deductive Reasoning เป็นการนำสิ่งที่ยอมรับว่าเป็นจริงมาประกอบเพื่อนำไปสู่ข้อสรุปจากสิ่งที่ยอมรับแล้ว
         การสรุปที่สมเหตุสมผล (Valid) คือ ข้ออ้างหรือเหตุที่เป็นจริงเป็นผล อ่านเพิ่มเติม
บทที่ 1
เซต
2.1 เซต
เซต  เป็นคำที่ใช้บ่งบอกถึงกลุ่มของสิ่งต่างๆ และเมื่อกล่าวถึงกลุ่มใดแน่นอนว่าสิ่งใดอยู่ในกลุ่ม สิ่งใดไม่อยู่ในกลุ่ม เช่น
       เซตสระในภาษาอังกฤษ  หมายถึง  กลุ่มของอังกฤษ  a, e, i, o และ u
       เซตของจำนวนนับที่น้อยกว่า 10 หมายถึง อ่านเพิ่มเติม